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ABSTRACT
Hedonic games are coalition formation games in which agents’
utility depends only on their own coalition. The introduction of
Altruistic Hedonic Games increased the expressive potential of
Hedonic Games by considering the utility of each of the agent’s
friends within the coalition. We introduce Super Altruistic Hedonic
Games (SAHGs), in which an agent’s utility may depend on the
utility of all other agents in the coalition, weighted according to
their distance in the friendship graph. We establish the framework
for this new model and investigate the complexity of multiple no-
tions of stability. We show that SAHGs generalize Friend-oriented
Hedonic Games, Enemy-oriented Hedonic Games, and selfish-first
Altruistic Hedonic Games, inheriting the hardness results of these
games as minimum upper complexity bounds. We also give SAHGs
that have neither Nash stable nor strictly core stable partitions.

KEYWORDS
Coalition formation (non-strategic); Cooperative games: computa-
tion; Cooperative games:theory & analysis

1 INTRODUCTION
Consider the process of choosing where to live. Much has been
written (in the RecSys literature, preferences, etc.) about how to
choose the right house or apartment, even the right roommates
for a stable configuration. Let us consider the choice of neighbors,
perhaps in a setting where students are choosing their dormito-
ries/hostels. We can see the partitioning of students into living
units (floors, buildings, etc.) as an hedonic game. It is clear that we
value our friends’ happiness with the living situation, as we will
hear about it from them; our enemies’ happiness could be assumed
to also affect how they treat us. (If we stopped there, we would be
modeling evaluation as a Altruistic Hedonic Game.) More generally
we can also argue that our friends’ friends’ happiness will affect
our friends’, and thus indirectly, our own, and that this continues
out friendship chains, with decreasing (or at least, non-increasing)
effect as we increase the social distance from ourselves.

If we were building intranets, a node could evaluate the quality
of the local network in terms of the bandwidth to reachable nodes.
However, it would also need to take into account the quality of more
distant connections, if it hopes to have its packets relayed. There
are many other applications in which agents care not only about
immediate connections, but also those farther away. We introduce
a family of hedonic games that model such broad evaluations of
coalitions: the Super Altruistic Hedonic Games.
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2 RELATEDWORK
SAHGs are a natural extension of Altruistic Hedonic Gameswherein
agents consider the preferences of other agents [10]. In AHGs,
agents only consider the preferences of their friends. In SAHGS,
agents consider the preferences of all agents in their coalition. In
AHGs, friends are assigned fixed weights. In SAHGs, the weights
assigned to friends and enemies are not fixed, and the preferences
of all agents in a coalition are considered, often taking advantage
of indirect relationships such as friends of friends to adjust weights.
(Note that friendship is not transitive: a friend of a friend could be
our enemy.)

Social Distance Games (SDGs) are a class of coalition formation
games wherein an agent’s utility is a measure of their closeness, or
social distance, from the other members of their coalition [4]. SDGs
have certain similarities to SAHGs, but we believe that SAHGs can
better model realistic human interactions by combining the notion
of social distance with the consideration of others’ preferences
proposed in AHGs.

As we demonstrate later, SAHGs generalize Friends and Enemies-
oriented Hedonic Games [7]. In the former, agents seek to find
coalitions that maximize the number of friends with a secondary
goal of minimizing the number of enemies. In the latter, minimizing
the number of enemies is the primary goal, while maximizing the
number of friends becomes secondary. Recent work has investigated
the impact that neutral agents have on these games, defining a
neutral agent as one that is neither friend nor enemy [11]. It was
shown that permitting neutral agents in EHGs allows for games
that have no core stable partition [11]. Core stable partitions are still
guaranteed to exist in FHGs with neutral agents; however, strict-
core stable partitions are not [11]. The proofs of these findings
cannot be readily translated to SAHGs, because SAHGs do not allow
neutral agents. Neutral agents could be modeled as graph-based
games by labeling appropriate edges as neutral, but SAHGs are
focused on simple graph-based models, so the addition of neutral
edges is beyond the scope of this paper.

There are graph-related hedonic games that depend on edge-
weighted graphs. For instance, B andW games are a category of
hedonic games in which an agent’s utility is defined by the agents
in their coalition that they rate as the best or the worst, respectively
[5]. While these games fall into the category of hedonic games, we
don’t believe SAHGs can generalizeB orW games. Similarly, we do
not believe that eitherB orW games can generalize SAHGs. This is
due to the differences between B andW games and SAHGS. These
differences include the fact that the former two categories assume
each agent can assign a unique value to each other agent, while
SAHGs restrict agents to placing others into one of two categories.
Additionally, B andW games do not consider the preferences of
others as SAHGs do.

TheCoalition StructureGeneration (CSG) problem presents
a set of coalition formation games representable as a graph where
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each agent contributes a fixed value to their coalition [9]. There
are several significant differences between the CSG problem and
SAHGs, despite both falling under the broad scope of coalition
formation games. One major difference is the way agent values are
handled. In the CSG problem there can be as many values as there
are agents and all agents agree on the values assigned to each agent,
whereas SAHGs only allow one of two values to be assigned to each
agent and different agents can evaluate the same agent differently.
Additionally, the CSG problem assumes that utility is transferable,
so all members of a coalition earn the same utility. SAHGs do not
have transferable utility, so not all agents in a given coalition are
guaranteed to have the same utility. As a result, there is no clear
means to translate between the CSG problem and SAHGs.

3 DEFINITIONS
Below, we outline three types of cooperative games with non-
transferable utility, specifically coalition formation games. In each
type, a game G consists of

(1) N , a finite set of n agents, with
(2) preference set P = {Pi : i ∈ N }, where Pi is the preference

of each agent i over partitions of N into coalitions.
Depending on the type of game, P may exhaustively list each in-
dividual’s preferences or provide a succinct representation from
which preferences are derived.

Definition 3.1. [2, 3] Hedonic games are coalition formation
games with nontransferable utility wherein players are concerned
only with their own coalition. This inherently self-interested means
of determining utility makes such games hedonic in nature.

LetNi be the set of possible coalitions containing agent i ∈ N . A
preference ordering ofNi is derived from the preference set Pi ∈ P .
A solution for a game is a partition π , which is contained in the set
of all distinct partitions Γ. Each player i ∈ N ranks each partition
π ∈ Γ based on the coalition to which they belong.

Hedonic games are a broad category, so it can be useful to define
sub-categories that exhibit certain interesting or useful properties.
Altruistic hedonic games are one such sub-category that has been
a major inspiration for the work done in this paper.

Definition 3.2. [10] An altruistic hedonic game (AHG) is a
hedonic game in which agents derive utility from both their own
basic preferences and those of any friends in the same coalition.

Let each agent i ∈ N have utility ui , and let i partition other
agents into friends and enemies, given by Fi ,Ei . Three levels of
altruism are considered in AHGs: selfish-first, equal treatment,
and altruistic first. The function used to determine an agent’s
utility depends on their altruism level and on pre-utility preference
values calculated as the utility agents would have in a friends-
oriented hedonic game based on the same graph (n |C∩Fi |− |C∩Ei |).
Two of these functions utilize a weight parameter of M = n5 to
ensure that one of the terms in the equation dominates the other.
This weight value is the smallest whole number exponent ofnwhich
guarantees this for both equations that make use ofM . Definitions
for each altruism level and their utility functions are outlined below:

(1) Selfish-First: agents prioritize their own preferences, but
use the preferences of others to break ties.

ui = M(n |C ∩ Fi | − |C ∩ Ei |) +
∑

a∈C∩Fi

n |C ∩ Fa | − |C ∩ Ea |
|C ∩ Fi |

(2) Equal Treatment: all preferences are treated equally.

ui =
∑

a∈C∩(Fi∪{i })

n |C ∩ Fa | − |C ∩ Ea |
|C ∩ (Fi ∪ {i})|

(3) Altruistic First: agents prioritize the preferences of others,
but use their own preferences to break ties.

ui = n |C ∩ Fi | − |C ∩ Ei | +M ·
∑

a∈C∩Fi

n |C ∩ Fa | − |C ∩ Ea |
|C ∩ Fi |

AHGs introduce some interesting ideas by incorporating the
preferences of others into utility computations in a polynomially
computable fashion. The three levels of altruism provide a means
to vary the degree to which agents consider the preferences of
others, while also providing bounds on the weights needed to en-
sure the dominance of one term in the utility equation. However,
only considering the preferences of friends and three variations
of altruism limits the preferences and degrees of altruism that can
be represented. We introduce Super Altruistic Hedonic Games in
order to broaden the scope of representation.

Definition 3.3. Super Altruistic Hedonic Games1 (SAHGs)
extend the core principal of AHGs so agents consider the prefer-
ences of all agents in their coalition. Agents weigh their considera-
tion of each other’s preferences according to some polynomially
computable value.

Let parameters (a,д,M,L) be non-negative weights where a and
д represent the weights associated with friends and enemies, re-
spectively, while M and L represent the weights associated with
personal preference and the average of friends’ preferences. Next,
let D(i, j) be a polynomial-time computable function that is non-
increasing with the graph distance between i and j . Let the number
of other agents in coalition Ci be hi = |Ci \ {i}|. For each agent
i ∈ N , let that agent’s base preference be bi = a |Ci ∩Fi | −д |Ci ∩Ei |,
and let their utility be

ui = Mbi + L
∑

j ∈Ci \{i }

D(i, j) · bj
hi

.

(If Ci = {i} then the sum is set to 0.) The default definition of
D is the inverse graph distance function: for any pair of agents
i, j ∈ N : i , j, let di j be the shortest path distance between them,
then let D(i, j) = 1/di j . The total utility of a partition π is given
byUT =

∑
i ∈N ui .

Proposition 3.4. SAHGs generalize several graph-based hedonic
games.

• A Friends-oriented Hedonic Game is a SAHG with parameters
(a,д,M,L) = (n, 1, 1, 0), and an Enemies-oriented Hedonic
Game is a SAHG with parameters (1,n, 1, 0). (Because L = 0,
it does not matter how we define D.) Thus, all hardness results
for FHGs and EHGs are inherited by SAHGs.

1We considered calling them “Super Kinda Altruistic ex-Hedonic Fun Games,” even
though the sound of it was really quite atrocious.
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• SAHGs also model Altruistic Hedonic Games under the selfish-
first criterion ((a,д,M,L) = (n, 1,n5, 1) and D(i, j) = 1 if
j ∈ Fi and D(i, j) = 0 if j < Fi ).

• If D ≡ 1 and (a,д,M,L) = (n, 1, 1, 1) then we capture the
notion of a friend-oriented hedonic game on the transitive
closure of the friendship graph.

In Section 5 we discuss complexity-theoretic results. We assume
familiarity with the classes P and NP.

Definition 3.5. [12] The complexity class DP contains languages
defined as the difference between two languages in NP.

For example, let C be an NP-complete language, and let L =
{⟨c1, c2⟩ : c1 ∈ C ∧ c2 < C}. Then L = {C × Σ∗} \ {Σ∗ ×C} (where
Σ∗ is the set of all strings over the alphabet used to define C).

Definition 3.6. Complexity class Θp
2 is an alternative name for

PNP [loд] [8]. Games in this class are solvable by a P machine that
can make O(logn) queries to an NP oracle.

3.1 Stability and Optimality
One of the major topics of hedonic games is stability, the idea
that a partition will not be disrupted by individuals rejecting their
assigned coalitions and moving to other coalitions. There are many
sets of constraints placed on such disruptions, such as the number
of agents that can move simultaneously; whether all moving agents
must see an increase in utility; whether agents left behind bymovers
must see their utility increase, or whether agents being joined by
movers must see their utility improve.

Optimality, the notion of finding a utility-maximizing partition,
is another major topic of hedonic games. Notions of optimality are
subject to constraints which clarify what is being optimized, such
as whether individual or collective (egalitarian or utilitarian) utility
is being optimized, or whether utility can be improved for some at
the expense of others (Pareto efficiency).

We next define notions related to stability that are referenced in
the rest of the paper. In these definitions π is a partition composed
of a set of k disjoint coalitions {C1,C2, ...Ck }.

• Nash Stability [3]: ∀i ∈ N and ∀C ∈ π : C , π (i) we have
π (i) ⪰i C ∪ {i}

• Individual Stability [3]: ∀i ∈ N and ∀C ∈ π ∪ {∅} : C , π (i):
π (i) ⪰i C ∪ {i} or ∃j : C ≻j C ∪ {i} Permission must be
received from all existing coalition members before a new
agent can join.

• Contractual Individual Stability [3]: ∀i ∈ N and ∀C ∈ π ∪
{∅} : C , π (i):

π (i) ⪰i C ∪ {i}, ∃j : C ≻j C ∪ {i}, or
∃k : π (i) ≻k π (i) \ {i}

• Wonderful Stability [18]: ∀C ∈ π : C is a maximal (non-
extendable) clique.

• Strictly Popular [10]: partition π beats all other π ′ , π in
pairwise comparisons

|{i ∈ N |π (i) ≻i π ′(i)}| > |{i ∈ N |π ′(i) ≻i π (i)}|
• Blocking coalition [15]: A coalition C blocks partition π if
∀i ∈ C : C ≻i π (i).

• Weakly blocking coalition [15]: A coalition C weakly blocks
partition π if ∀i ∈ C : C ⪰i π (i) and ∃j : C ≻j π (j).

• (Strict) Core Stability [15]: no (weakly) blocking coalition
exists.

4 PROPERTIES OF PARTITIONS
Proposition 4.1. If a coalition comprises a single clique, C, then

individual utilities are given by a linear function of the number of
agents and coalition utility is defined by a geometric function of the
number of agents.

Proof. We first recall that the base preference of each agent
i ∈ N is given by bi = a |Ci ∩ Fi | − д |Ci ∩ Ei | where Ci is the
coalition to which i belongs, and that hi = |Ci ∩ Fi | + |Ci ∩ Ei |
defines the number of agents inCi \ {i}. Next recall that each agent
i ∈ N has utility given by

ui = Mbi + L
∑

j ∈Ci \{i }

D(i, j) · bj
hi

.

The total utility of a partition is defined byUT =
∑
i ∈N ui .

Now we define the total utility of a coalition as UC =
∑
i ∈C ui .

Because C is a clique, we know that ∀i, j ∈ C, i , j D(i, j) = 1. We
also know that all i ∈ C have hi = |C | − 1 and bi = a(|C | − 1). We
use this to calculate

ui = M · a(|C | − 1) + L
∑

j ∈Ci \{i }

a(|C | − 1)
1(|C | − 1) ,

which simplifies to ui = (M + L) · a(|C | − 1).
The total utility of the coalition is UC =

∑
i ∈C ui , which simpli-

fies to UC = (M + L)(a(|C |2 − |C |)). Thus, we have demonstrated
that, given a coalition C comprised of a single clique, the individ-
ual utility is a linear function of |C | and the coalition utility is a
geometric function of |C |. □

Proposition 4.2. Different partitions of a set of agents into cliques
may have different utilities.

Proof. Consider that coalition utility scales geometrically with
the number of agents if the coalition is a clique. Unless the clique-
coalitions are all of equivalent size, then the net utility will be
different.

We can also prove by contradiction with a game based on Figure
1 with parameters (a,д,M,L) = (1, 1, 1, 1). For each i ∈ N we have:

• bi = |Ci ∩ Fi | − |Ci ∩ Ei |
• ui = bi +

∑
j ∈Ci \{i }

D(i, j)·bj
hi

.

Figure 1: Unequal Cliques

Consider two partitions:
π1 = {{A,B,C}, {D}} and π2 = {{A,B}, {C,D}}.

In π1, we have bA = bB = bC = 2 and bD = 0. We also have
uA = uB = uC = 4 and uD = 0 and UT (π1) = 12. In π2, we have
bA = bB = bC = bD = 1 and uA = uB = uC = uD = 2. Thus,
UT (π2) = 8.
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Since we have two partitions into cliques with different total
utility values, we can conclude that partitioning agents into cliques
does not ensure a consistent total utility. However, given partitions
π3 and π4 dividing agents into equal numbers of cliques of each
size, the total utilities of the two partitions will be the same. □

Proposition 4.3. For all parameter values, for all stability notions
considered in this paper, there exist SAHGs with stable partitions.

Proof. LetG be the SAHG with structure given by a graph with
n nodes and no edges with parameters (a,д,M,L). For the partition
of singletons, each agent i has utility ui = 0. Since there are no
edges in the graph, no agent would benefit from forming a coalition
with any other agent or set of agents, so the partition of singletons
is stable. □

Theorem 4.4. Not all SAHGs have Nash stable partitions.

Figure 2: Game with no Nash stable partition

Proof. LetG be the SAHG with structure given in Figure 2, and
weight parameters (a,д,M,L) = (1, 1, 1, 3). This gives us:

• bi = |Ci ∩ Fi | − |Ci ∩ Ei |
• ui = bi + 3

∑
j ∈Ci \i

D(i, j)·bj
hi

.

This game has two equal-sized cliques which are connected to
each other through two intermediate agents. The first connecting
agent, agent 1, is connected to all agents in both cliques. The second
connecting agent, agent 10, is connected to a single agent in each
clique and is not connected to agent 1. The first clique is composed
of agents 1–5 and the second of agents 1, 6–9.

Because the only member common to both cliques is agent 1,
it is reasonable to expect that no stable coalition containing one
clique will contain any members from the other, except for agent
1. If members from two cliques form into coalitions which do not
include agents 1 and 10, then these two remaining agents would
prefer to remain as singletons rather than forming a two-person
coalition with each other. In this case, the utility of an agent in
one of the two clique coalitions is 12, while the utility of agents 1
and 10 are zero since they are singletons. This describes partition
π1 = {{1}, {2, 3, 4, 5}, {6, 7, 8, 9}, {10}} with total utilityUT = 96.

The partition π1 is unstable, because agent 1 can improve their
utility by joining one of the two clique coalitions. Since agent 1 is
connected to all agents in both cliques, its joining either coalition
will increase the size of the clique by 1, increasing the utility of all
agents in the coalition from 12 to 16. Agent 1 is indifferent between
the two cliques. This presents two possible partitions
π2 = {{1, 2, 3, 4, 5}, {6, 7, 8, 9}, {10}} and
π3 = {{2, 3, 4, 5}, {1, 6, 7, 8, 9}, {10}},
each of which has total utilityUT = 128.

Both π2 and π3 are also unstable because agent 10 can also
improve its own utility by joining a coalition. If agent 10 chooses to

join the coalition that agent 1 did not, it derives utility u10 = 3.25,
while it derives utility u10 = 3.6 if it joins the same coalition as
agent 1. Thus, agent 10 prefers to join whichever coalition agent
1 joined, which results in either π4 = {{1, 2, 3, 4, 5, 10}, {6, 7, 8, 9}}
or π5 = {{2, 3, 4, 5}, {1, 6, 7, 8, 9, 10}}. The total utility of this new
partition isUT = 104.

Still, π4 and π5 are unstable because agent 1 can improve its util-
ity by leaving the current coalition to join the other clique, thereby
restoring its utility to 16. This gives either π6 = {{2, 3, 4, 5, 10},
{1, 6, 7, 8, 9}} or π7 = {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}}. In these par-
titions, the total utility is UT = 110.5. However, π6 and π7 are
unstable since agent 10 can improve its utility by following agent
1, which creates a cycle of four partitions, none of which are Nash
stable. Thus we conclude that there is no Nash stable partition for
this game, and, by extension, that not all SAHGs are guaranteed to
have Nash stable partitions. □

Notice that this game has core stable partitions: {{1, 2, 3, 4, 5},
{6, 7, 8, 9}, {10}} and {{2, 3, 4, 5}, {1, 6, 7, 8, 9}, {10}}. The 5-member
cliques weakly block the opposing partition, but there are no coali-
tions that block either partition. Additionally, agent 10 would not be
accepted in either coalition, since its presence decreases the utility
of every other member in the coalition.

Theorem 4.5. Not all SAHGs have strictly core stable partitions.

Proof. Consider a game based on Figure 3 with parameters
(a,д,M,L) = (1, 1, 1, 1). For each agent i ∈ N , we have:

• bi = |Ci ∩ Fi | − |Ci ∩ Ei |
• ui = bi +

∑
j ∈Ci \i

D(i, j)·bj
hi

.

Figure 3: Game with no strictly core partition

This game contains two equal-sized cliques connected by a single
intermediate agent, C . The grand coalition is weakly blocked by
{A,B,C} and {C,D,E}. If one of these weakly blocking coalitions
splits off from the grand coalition, we either have

π1 = {A,B,C}, {D,E} or π2 = {A,B}, {C,D,E}.
π1 is weakly blocked by {C,D,E} and π2 is weakly blocked by
{A,B,C}.

The utility of A and B is maximized in {A,B,C}, while {C,D,E}
maximizes the utility ofC andD. The utility of agentC is maximized
by the grand coalition and by {A,B,C} and {C,D,E}. As such, all
possible partitions are weakly blocked by {A,B,C}, {C,D,E}, or
both. Thus there is no strictly core stable partition. □

Proposition 4.6. [1] Contractually individually stable partitions
are guaranteed to exist, for all hedonic games.

5 COMPUTATIONAL COMPLEXITY
Proposition 5.1. Computing the utility of a partition for a SAHG

is in P.
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Proof. Consider a partition π of some game G. The steps to
evaluate the partition are:

(1) ∀i ∈ N and ∀j ∈ π (i) compute D(i, j)
(2) ∀i ∈ N compute hi and bi
(3) ∀i ∈ N compute ui
(4) compute UT (π ).

We assume that intermediate values are computed once and stored.
In the default case where D(i, j) is the graph distance between

i and j, we can use the Floyd-Warshall algorithm to compute this
distance for all (i, j) ∈ N × N in time O(n3) [6], otherwise, it is
O(n2)t(n), where t(n) is the time needed to compute any D(i, j) for
a SAHG of size n. We compute hi and bi in time O(n2) by checking
each entry in π (i) against the lists Fi and Ei . Computing hi and
bi for all i ∈ N requires time O(n3). Calculating ui requires time
Θ(|π (i)|) < O(n). So the time required to compute ui for all i ∈ N
is O(n2). UT (π ) can then be computed in time O(n). The overall
time required to evaluate a partition is O(n3). Thus a partition of
a Super Altruistic Hedonic Game can be evaluated in polynomial
time. □

Proposition 5.2. Deciding whether a partition is Nash stable is
in time O(n2 · e(n)), where e(n) is the time needed to evaluate the
utility of a coalition.

Proof. Consider a partition π of some game G. To determine
if π is Nash stable, ∀i ∈ N and ∀C ∈ π : C , π (i) we compare
ui (π (i)) with ui (C ∪ {i}). If �(i,C) such that ui (C ∪ {i}) > ui (π (i)),
then π is Nash stable.

There are at most n coalitions in π in the case of the partition of
singletons, and for each C ∈ π n utility values must be computed.
At most n2 utility values must be computed to determine if π is
Nash stable. Determining if a partition π is Nash stable requires
time O(n2 · e(n)) where e(n) is the time needed to compute the
utility of a coalition. □

We have previously demonstrated that FHGs, EHGs, and selfish-
first AHGs are generalized by SAHGs. As a result, SAHGs inherit
the complexity results of these games. Known complexity results
for these games are outlined in Table 1.

Corollary 5.3. Determining if strictly popular partitions exist
in SAHGS is coNP-hard [10]. Verifying a partition is strictly popular
is coNP-hard [10]. Determining if strictly core stable partitions exist
is DP-hard [13, 14]. Verifying a partition is (strictly) core stable is
coNP-hard [18]. Determining if wonderfully stable partitions exist is
DP-hard [13, 14].

6 CONCLUSIONS AND OPEN QUESTIONS
A Probably Approximately Correct (PAC) learning model is in-
tended to find good function approximations. This model has pre-
viously been applied to several varieties of hedonic games [16], for
instance, to PAC learn stability. We conjecture that SAHGs are also
PAC learnable.

Future work will address the complexity of optimal partition
algorithms for SAHGs, and algorithms for finding stable partitions
when they exist.

Table 1: Known HG Complexity Results

Strictly Popular Verification
AHG coNP-complete [10]

Strictly Popular Existence
AHG (selfish-first) coNP-hard [10]

Nash Stable Existence
AHG Always exist [10]
Individually Stable Existence

AHG Always exist [10]
Contractually Individually Stable Existence

AHG Always exist [10]
Core Stable Existence

EHG Always exist [7]
FHG Always exist [7]

AHG (selfish-first) Always exist [10]
Strict Core Stable Existence

EHG DP-hard [13, 14]
FHG Always exist [13, 14]

AHG (selfish-first) Always exist [10]
Core Stable Verification

EHG coNP-complete∗ [17]
Strict Core Stable Verification
EHG coNP-complete∗ [17]
Strict Core Stable Computation
FHG P [7]
Wonderfully Stable Existence
EHG DP-hard [13, 14]

∗ Corollary of their result for additive games.
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